Design and Linkage of Compound Filters to HTS Assay Promiscuity

Bradley C. Pearce, Michael J. Sofia, Dieter M. Drexler, David A. Stock
Bristol-Myers Squibb, Wallingford, CT

229th ACS National Meeting
San Diego, CA
March 15, 2005
BMS Screening Deck Flags / Filters

- *Property flags: Compounds flagged ≥ 2
 - MW > 639 & absolute cutoff if MW ≤ 130 or ≥ 900
 - cLogP < -3 or > 5.5
 - HBD > 5
 - HBA > 9
 - RTB > 14

- Functional group queries
 - Annotation flags
 - Exclusion filters
 - Daylight SMARTS-based

- How effective are these flags / filters?

Linkage of Property and Functional Group Filters to Promiscuous HTS Data

- Used verified primary HTS data
 - Unfiltered – No HTS triage biases
 - 12 Years of data
 - Greater than 61 million data points
 - Annotated by screeners – Inactive 0, Active 1

- Definitions:
 - \textit{Inactive} = Inactive and have seen > 15 assays
 - \textit{Active} = Active in \geq 1 and < 7 assays
 - \textit{Promiscuous} = Active in \geq 7 assays
Active Primary HTS Data

48% Active
12% Promiscuous
0.8%
Evaluation of Property and Functional Group Filters Using HTS Data

<table>
<thead>
<tr>
<th>HTS Classification</th>
<th>% Property Fails</th>
<th>% Functional Group Fails</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inactive</td>
<td>3.3</td>
<td>4.3</td>
</tr>
<tr>
<td>Active</td>
<td>4.8</td>
<td>5.5</td>
</tr>
<tr>
<td>Promiscuous</td>
<td>4.4</td>
<td>10.9</td>
</tr>
</tbody>
</table>

- Compound Promiscuity
 - Weak correlation to property filters
 - Strong correlation to functional group filters
Active Primary HTS Data
Functional Group Filter Impact

Promiscuity strongly associated with functional group flagged compounds
Functional Group Filter Analysis

 - Any two med chemists agree only 28% of the time!
 - The same med chemist is only 50% consistent!
- Filter design is highly dependent on personal biases
- Reduce subjectivity by relying on empirical data
 - In-depth analysis of primary HTS data and FG filters
 - Linkage of compound screening promiscuity to FG filter
 - Expected percentage of actives relative to HTS
 - How the actives translate across multiple assays
- For this analysis we used the entire set of annotation and exclusion-based SMARTS
Promiscuity Ratio Index (PRI) Calculation & Statistical Method

The PRI is a measure of how strongly compounds grouped or flagged by a particular functional group filter are active in assays versus background HTS (HTS)

- PRI = mean FG filter % actives / 1.925
- Statistical analysis
 - 95% Confidence intervals constructed for a ratio
- Rule classifications:
 - Less is where confidence bounds < 1
 - Same is where confidence bounds contain 1
 - Greater is where confidence bounds > 1
Promiscuity Strength Index (PSI)
Calculation & Statistical Method

The PSI is a measure of how strongly active compounds grouped or flagged by a particular functional group filter express that activity across an increasing number of assays.

- Weighted mean of the number of actives for each compound flagged by a particular functional group filter
- \(\text{PSI} = 3.29 \pm 0.004 \text{ SE for HTS benchmark} \)
- Standard t-statistics applied
- Rule classifications:
 - *Less* is where \(\text{PSI} < 3.29 \) and \(p\)-value < 0.05
 - *Same* is where \(p\)-value > 0.05
 - *Greater* is where \(\text{PSI} > 3.29 \) and \(p\)-value < 0.05
HTS Filter Promiscuity Linkage

Linkage Rating Based on Statistical Rule Classes:

- **LOW (9%)**
 - PRI & PSI both less or one same one less

- **MEDIUM (18%)**
 - PRI & PSI both same or one greater one less

- **HIGH (64%)**
 - PRI & PSI both greater or one same one greater
Structural Integrity (SI) Data

- Connectivity between functional group filter flag and screening data depend on compound SI
- Coupled LC/MS: compound identity and integrity
- SI passes where purity > 75% with expected MW
- Limited set of historic SI data on deck compounds
- Non or under-represented flagged compounds supplemented by additional SI analyses
- Current data does not necessarily link to past conditions
- General guide to suspected reactivity patterns
Functional Group Filter Linkage to HTS Data – Some LOW Examples

<table>
<thead>
<tr>
<th>Functional Group Filter</th>
<th>Distinct Cmpds</th>
<th>Query Structure</th>
<th>PRI</th>
<th>PRI Class</th>
<th>PSI</th>
<th>PSI Class</th>
<th>% Pass SI</th>
<th>Linkage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2halo pyrazine 5EWG</td>
<td>78</td>
<td></td>
<td>0.11</td>
<td>Less</td>
<td>1</td>
<td>Same</td>
<td>0</td>
<td>LOW</td>
</tr>
<tr>
<td>2halo pyridazine 3EWG</td>
<td>40</td>
<td></td>
<td>2.08</td>
<td>Same</td>
<td>1.09</td>
<td>Less</td>
<td>30</td>
<td>LOW</td>
</tr>
<tr>
<td>2halo pyridine 3EWG</td>
<td>890</td>
<td></td>
<td>0.82</td>
<td>Less</td>
<td>2.72</td>
<td>Less</td>
<td>56</td>
<td>LOW</td>
</tr>
<tr>
<td>Activated 4mem ring</td>
<td>28</td>
<td></td>
<td>0.15</td>
<td>Less</td>
<td>5</td>
<td>Same</td>
<td>0</td>
<td>LOW</td>
</tr>
</tbody>
</table>
Functional Group Filter Linkage to HTS Data – Some HIGH Examples

<table>
<thead>
<tr>
<th>Functional Group Filter</th>
<th>Distinct Cmpds</th>
<th>Query Structure</th>
<th>PRI</th>
<th>PRI Class</th>
<th>PSI</th>
<th>PSI Class</th>
<th>% Pass SI</th>
<th>Linkage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branched polycyclic aromatic</td>
<td>729</td>
<td></td>
<td>3.73</td>
<td>Greater</td>
<td>9.49</td>
<td>Greater</td>
<td>50</td>
<td>HIGH</td>
</tr>
<tr>
<td>Polyhalo phenol d</td>
<td>40</td>
<td></td>
<td>9.84</td>
<td>Greater</td>
<td>23.3</td>
<td>Greater</td>
<td>25</td>
<td>HIGH</td>
</tr>
<tr>
<td>Quinone methide</td>
<td>160</td>
<td></td>
<td>6.91</td>
<td>Greater</td>
<td>9.1</td>
<td>Greater</td>
<td>29</td>
<td>HIGH</td>
</tr>
<tr>
<td>Thio xanthate</td>
<td>52</td>
<td></td>
<td>4.68</td>
<td>Greater</td>
<td>14.78</td>
<td>Greater</td>
<td>33</td>
<td>HIGH</td>
</tr>
<tr>
<td>thiosulfoxide</td>
<td>6</td>
<td></td>
<td>4.92</td>
<td>Greater</td>
<td>11</td>
<td>Greater</td>
<td>0</td>
<td>HIGH</td>
</tr>
</tbody>
</table>
Functional Group Filter Linkage to HTS Data – Controls

<table>
<thead>
<tr>
<th>Functional Group Filter</th>
<th>PRI</th>
<th>PRI Class</th>
<th>PSI</th>
<th>PSI Class</th>
<th>% Pass SI</th>
<th>Linkage</th>
</tr>
</thead>
<tbody>
<tr>
<td>All HTS Data</td>
<td>1</td>
<td>NA</td>
<td>3.29</td>
<td>NA</td>
<td>73</td>
<td>NA</td>
</tr>
<tr>
<td>diphenylmethane</td>
<td>1.23</td>
<td>Greater</td>
<td>3.75</td>
<td>Greater</td>
<td>74</td>
<td>HIGH</td>
</tr>
<tr>
<td>ethylcarbamate</td>
<td>0.83</td>
<td>Less</td>
<td>3.81</td>
<td>Greater</td>
<td>79</td>
<td>MED</td>
</tr>
<tr>
<td>hydantoin</td>
<td>0.91</td>
<td>Less</td>
<td>4.18</td>
<td>Greater</td>
<td>83</td>
<td>MED</td>
</tr>
<tr>
<td>indole</td>
<td>0.83</td>
<td>Less</td>
<td>3.88</td>
<td>Greater</td>
<td>80</td>
<td>MED</td>
</tr>
<tr>
<td>isoquinoline</td>
<td>0.74</td>
<td>Less</td>
<td>3.52</td>
<td>Same</td>
<td>92</td>
<td>LOW</td>
</tr>
<tr>
<td>phenethylamine</td>
<td>1.43</td>
<td>Greater</td>
<td>3.20</td>
<td>Less</td>
<td>86</td>
<td>MED</td>
</tr>
<tr>
<td>SI > 75% purity</td>
<td>1.47</td>
<td>Greater</td>
<td>4.50</td>
<td>Greater</td>
<td>100</td>
<td>HIGH</td>
</tr>
<tr>
<td>SI < 50% purity</td>
<td>2.05</td>
<td>Greater</td>
<td>5.10</td>
<td>Greater</td>
<td>0</td>
<td>HIGH</td>
</tr>
</tbody>
</table>

- **Indole & phenethylamine** ⇒ Considered GPCR privileged structures
 - Levels of promiscuity similar to HTS background
- **Diphenylmethane** ⇒ Prevalent substructure in many drug databases
 - Higher level of promiscuity but still on low end of high class
- **Ethylcarbamate, hydantoin, isoquinoline** ⇒ no particular bias
 - None of these differ strongly from HTS
- **Structural Integrity Flags**
 - Modest trend of highly impure compounds being more promiscuous
Functional Group Filter Implementation

- **Example of LOW**: 2-Halo Pyridine 3-EWG
 - Low PRI and PSI values
 - In general, these halo-substituted \(\pi \)-deficient systems are not showing high linkages to promiscuity
 Action \(\Rightarrow \) filter removal

- **Example of MED**: Trichloromethyl Ketone
 - Similar to HTS means with respect PRI and PSI
 - Typical of other reversible electrophiles
 Action \(\Rightarrow \) compound annotation flag

- **Example of HIGH**: Polyhalo Phenol D
 - Excessively high PRI and PSI values
 Action \(\Rightarrow \) compound exclusion from screening
Future Directions

- Only 15% of the promiscuous HTS hits are flagged by current FG filters
 - Other mechanisms of compound promiscuity
 - Compound aggregation

- Cheminformatic approaches:
 - New SMARTS functional group queries
 - Bayesian modeling (SciTegic)
 - Other software such as LeadScope
 - Understanding new descriptor linkages using statistical mapping to HTS data
Acknowledgements

Martyn Banks
Brett Beno
Mark Hermsmeier
Debbie Loughney
Nelly Masias
Nick Meanwell
Ramesh Padmanabha
Dora Schnur
SciTegic Help Team